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Imitation games: Power-law sensitivity to initial conditions and nonextensivity
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We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions in the system
of competing logistic maps introduced by Suzuki and KandXuysica D75, 328(1994], which modelizes the
battle of birds defending their territories. From the associated exponent we obtain the value for the entropic
index g, which defines the recently introduced nonextensive generalization of the Boltzmann-Gibbs thermo-
statistics. In addition, we calculate the dynamical exporzentVe obtainedq=—0.69 andz=1.32 for the
mean-field-type calculationd= ) andgq=—0.39 andz=1.12 for a square latticed& 2) model. Finally, we
have generalized Suzuki and Kaneko’s model, using an extended form of the logistic map, and have calculated
the corresponding values gffor d=1,2c.
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I. INTRODUCTION w

Si=—kg>, piInp;. (2
Self-organized criticality is an interesting and quite ubig- =1

uitous phenomenon. Indeed, it is experimentally observe . . .
’ : y (Eet us mention that if we consider a system composed of two

and theoretically studied in a wide variety of physical sys-. :
tems, which include sandpiles, ricepiles, and earthquiges ndependensubsystem# andB (in the sense that the com-

It has also been observed in the model introduced by Suzu0Sed probabilitiesactorize into those ofA and B), we

and Kanekd?2], who proposed a set of coupled logistic maps®2sily ~ verify — that  S;(A+B)=S,(A)+S4(B) + (1

to mimic the singing imitation games that constitute the basis~ ) Sq(A)Sq(B), which clearly exhibitshonextensivityf g

of the battle for territory defense in various species of birds 7 1- L . .

This model has successfully described a variety of biologi-. "€ above generalization has been applied to a wide va-
cally relevant features. However, its sensitivity to the initial "€ty of physical situations including self-gravitational sys-
conditions has never been focused on up to now, to the bef§MS[5.6], turbulence in pure-electron plasrp@l, the dy-

of our knowledge. This property, which essentially charac1amic linear response for nonextensive systéi]s Levy-
terizes chaotic behavior, is herein studied quantitatively/ike [8] and correlatedlik¢9] anomalous diffusions, the solar
Moreover, we show that it is intimately related to thermo-N€utrino probleni10], cosmology11], long-range fluid and
statistical nonextensivity in the sense we now describe. ~Magnetic systemgl2], and optimization techniqugd3].

It has been known for many yedd] that standard statis-  1his formalism has been showWa4,19 to be connected
tical mechanics fails to describe pathological systems such 49 the sensitivity of nonlinear dynamical systems. More pre-
those that include long-range interactio@as well as long- cisely, the numerical analysis of Iog!stlcll_ke maps as well as
range microscopic memory or fractal boundary conditions ir?f the Bak-Sneppen model for biological evolution has
space-time, among othersTo discuss this type of anoma- shown that, whenever quantities such as the Lyapunov expo-

lous system, one of us proposgt] a thermostatistics based NNt vanish(e.g., at the onset of chapshe standard, expo-
on the generalized entropic form nential type of sensitivity to the initial conditions is often

replaced by a weaker, power-law type of sensitivity. It has
been argued that, within the nonextensive formalism associ-
ated with Eq.(1), the sensitivity to the initial conditions of

w
1- Z p{ possibly large classes of nonlinear mapgli4, 16, e.g., for a

i=1
=K— one-dimensional map,
Se=k—4=1 1 P
AX(t)
= i =[1+4(1— U(1-q)
whereW is the total number of configurationgp;} are the & Axilg]_,OAX(O) [+ (1=t - O

associated probabilitiek,is some suitable positive constant,

andg e R is the index that allows for the generalization. It is which is the exact solution of the differential equation

straightforwardly verified that, in thg—1 limit, Eq. (1)  d&/dt=)4£9. We see thati) for g=1 we recover the tradi-

reduces{usingp?’l~1+(q—l)In p;] to the well-known ex-  tional exponential behaviog(t)=e*1' and (ii) if t—o, &

pression «tY(1=9) which corresponds to the so-called weak chaos.
The Pesin equality states that, under some conditions, the
Kolmogorov-Sinai entrop; (where the subindex 1 refers

*Also at International Centre for Theoretical Physics, Trieste,to the traditional statistigsequals the Lyapunov exponent
Italy. \1. In[14], both magnitudes, namely, the Kolmogorov-Sinai
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entropy and the Lyapunov exponent, were independently 600
generalized tK, and\, respectively{hereq precisely is -

the entropic parameter appearing in Ef), on which the L period-4 window
definition of K, is based In the g—1 limit K, and A\, L ' .
reduce toK; and \;, respectively. It was shown tha, I period-3 window
coincides with\, thus generalizing, for arbitrarg, the 400 .
Pesin equality as i onset of chaos .
Kqe=Ag (Ag=0). @ g
[&]
(/2]

Let us stress that since it is from the generalized entropy
S, that we have obtainel{, and since Eq(4) exhibits the
equality betweerK, and\, , when we focus on, in some
context we are referring also to the generalized entropy and
in particular to a specific value af.

In the present work, we show how these ideas apply to
Suzuki and Kaneko’s imitation gamég]. After some tran-
sient, this model spontaneously evolves towards a critical
state located at the edge between chaos and periodic win-
dows, i.e., in a parameter region where the Lyapunov expo-

200

nent of individual maps is close to zero. This peculiar steady- a
state-like behavior is sometimes referred toimtermittent FIG. 1. Stationary score versasfor 100 logistic maps playing
chaosor weakly chaotic. all with all (mean-field-like model The sum was calculated during
~10® time steps after a long relaxation period. One time step is a
Il. IMITATION GAMES single two-bird game. The period-three window, period-four win-

dow, and onset of chaos are pointed out by arrows; other remark-
Motivated by the observed complexity of bird songs andable peaks correspond to other windows and bifurcations.
by the observation that birds try to imitate each other’s songs ) . )
for defense of territory, Suzuki and Kaneko advanced a BY inverting the role of the two maps and repeating the
model to study mutual imitation games among artificial S&M€ procedure, the quantiy(j,i) is calculated. ID(i,))
birds. They confirmed, employing a set of interacting logistic =P (1.1). then we will say that théth map imitates better
maps, the evolution to the edge between chaos and Windowge jth map than the other way around; hence itremap

Let us briefly review their model. We use, for the imita- WiNS:" By "wins” we mean that the parametea(j) is
tion games, the logistic maps substituted by a value in the vicinity @f(i) or, more pre-

cisely, it becomesi(i) + 6, whered is a small random num-

N1 a2l ber, representing mutationalpossibility; following[2], & is
Xna(h)=1=a1)x(1) © extrzacte_d from the Lorentzian distributioR(8)= u/(p
that play by pail’S |(,J) (Xn(|) E[_l,l], a(l) 6[0,2], i + & ) with ,LL=0001 IfD(l,J)>D(J,|), the “winner” now

is thejth map and we proceed as before, i.e., we change the
parameters of theth map. We have not used homogeneous
random distributions to determin®because, as noted [&]

=1,2,... N). Initially, each map starts with random values
for both xy(i) anda(i) and repeats its dynamics for a time
.Tfé! (.;el lsta;tndstfor _:_ilaxagc)nlong ?nough .to _aptpro(;:lc? Its and confirmed by us, this can lead to parametethat be-

individual attractor. Then, during a tin&,; (imi stands for ;0 tranped at intermediate, meaningless values. Let us add

imitation), theith map (for all values ofi) modifies its dy-  hat no further variations were performed on gaparameter
namics(imitateg with a feedback from th¢th map(we de-  gjstribution because, as noted by Susuki and Kargkand

scribe later on how the sequence fois chosen confirmed by our own simulations, the distribution of this
. ) i i i 1o parameter appears to be essentially “irrelevant.”
Xn+1(1)=1—a(i){[1—e(i)]xy(1) +e(D)xa( ] )% (6) In order to determine the values afthat often win and

. . following the lines of[ 2], we define a score for each value of
where thee(i) are the parametergandom numbers uni- 5 \ye increase by one a counter associated with the value of
formly distributed between zero and one and chosen oncg f the winning map and by zero the counter corresponding
foreven that characterize how strong the imitation is. After i, the loser. In Fig. 1 we show the score as a functioa.of
this time, theith map returns to its own dynamigthis isto  Note the importance of the period-three and period-four win-
say, it runs with Eq(3) starting from its current value for,]  dows. Figure 2 shows the score as a function of the logistic-
during a periodTp . During time Tp a quantityD(i,j) is  map Lyapunov exponent. Note now the peak on the zero
calculated that measures the distance between the imitate@lue. Let us recall that, for a single logistic maps0 pre-

valuesx,(i) and the original ones,(j): cisely corresponds tq#1, i.e., to a power-lawinstead of
exponential dependence of the sensitivity to the initial con-
Trer* Timi* To ditions.
Di,j)= _ 2 Da=x(])A (@)
N=TreI Timi+1 . RESULTS
For the present work, and following Ref13], we adopt The Hamming distance between two systdths original

Tie1=Timi=Tp=30. and itsreplica) of N maps each, at any time is defined as



57 IMITATION GAMES: POWER-LAW SENSITIVITY TO. .. 3925

2500 1000 e
2000 N=1000 |
i 100 L N=500 |
F N=250 1
L, Te0or . H/M, [ N=125 |
o ) I il
O :
o
7] S oY
1000 10+ =
r e F :
500
I 1 T RIS BRI BT
L 100 10 102 108 104 105
0 - time
Lyapunov exponent FIG. 3. A log-log plot of the Hamming distance versus time for

various system sizes. All the curves coincide rather well on the

FIG. 2. Stationary score versus Lyapunov expon@ntas a straight-line part. The time step is a game between two maps.

result of the calculation in Fig. 1. Note the peak arowO, it

used a bin size of 0.0001. dependent point, after which a stationary plateau is reached.

N . . The slope of the first part of the curves is 0:8802. Since
H=S |an(i)—an(i)| @® this value equal§14] 1/(1-q), we determineq=—0.69
& N ’ +0.02. For thed=2 square lattice modefwith periodic
boundary conditionswe have obtainedj=—0.39+0.02.
where the prime stands for the replica sample. Note that th&hese values can be compared with those associated with
Hamming distance is calculated over the parametessthe ~ Other models, namely, the logistic map at its threshold to
maps and not over the entire phase sp@adsch includes the chaos (=0.4[14]), the Bak-Sneppen model for biological
x variableg because it is the (and not thex) that self- €evolution at the self-organized critical staig={ —2.1[15]),
organize. In our simulations, we have let a systerhiohaps ~ and the rice-pile modelq= —0.12[17]).
(N=125,250,500,1000) relax and then we have constructed The dynamical exponert is usually defined through
a replica by randomly changin@n =0.00) the parameters ~L?* whereris the time during which the system behaves
a of (typically) ten randomly chosen maps. After this is dynamically andL is the linear size of the system. More
done, we calculate the “initial” damage or Hamming dis- precisely, the timer is defined as the time needed for the
tanceH,. It is clear that, for increasingly large valuesf damage to reach, except for statistical fluctuations, its sta-
and since we have fixed the number of different maps in théionary value. Sarwas estimated through the intersection, in
replica to ten, the Hamming distance tends to zero. By s&ig. 3, of the two straight lines respectively defined by the
doing we numerically approach the definition of the plateaulike stationary value and the power-law increasing re-
Lyapunov exponent, which demands a vanishingly small ini-gime. It was foundsee Fig. 4 that the dynamical exponent
tial discrepancy between the replicas. It plays here an anal@=1.32£0.01. For thed=2 square lattice model we ob-
gous roll to the one played by Lyapunov exponents for indi-tained z=1.12+0.02. These values can be compared with
vidual maps. One reason that we used the Hamming distandBose obtained for the Bak-Sneppen modek (.56 [15]),
for characterization of the system is of practical order: Thethe rice-pile model¥=1.3[17]), and the square lattice Ising
search for the largest eigenvalue for the set of maps wouléerromagnet £=2.16[18]).
imply the diagonalization of a huge matrix an enormous In order to explore the dependence of the paramegter
number of times. This task is well beyond the current possiupon the nature of the maps, we implemented the algorithm

bilities of computational media. for the logisticlike family of maps
By allowing both the original and the replica systems to
follow the previously described dynamiasith identical se- Xn+1(1)=1=a(i)[x,(i)[¢ 9

guences of random numbsdie accordance with the standard

spreading-of-damage procedyreve calculated the ratio in dimensiond=1,20. The explored values of belong to
H,/Hy. We use as the unit of tim@ is increased by one the interval[2,<]. In Fig. 5 we present the dependenceqof
each single game between two birds. In Fig. 3 we show, foon (£,d). The tendency ofj to the value 1(extensivity as
the mean-field-like modedkvery bird plays with each one of (—o is apparentfor all dimensionswhereas for all finite
the othery the log-log time dependence of the averémeer  values of{, q does depend on dimensionality. There is no
50 realizationy of H,,/Hq for various system sizes. It is a threshold for the transition from nonextensivity to extensiv-
general feature thaH, /H, grows with time following a ity; the change is gradual and only in tlje>e limit is ex-
power law (basically the same for all sizesip to a size- tensivity recovered.
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FIG. 4. A log-log plot of timer needed to reach the “knee(in
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FIG. 5. Dependence af on the dimension of the model and on
{. The calculations were carried fdr=1, 2, and~ (we recall that

Fig. 3 versus system size. The slope of the straight line is 1.32 withd=c0 corresponds to the mean-field approximatiand for{ = 2,

good accuracy. The time units are the same as in Fig. 3.

In addition to the above results, we have checked th
sensitivity to the initial conditions of the set of valugs}.

3, 4,5, 10, 20, and 40. In thg—« limit, g—1 for all values ofd.

varying, universality classes. In particular, the lingt 1

?extensivity is reached, for all dimensions, whén-o.

Summarizing, we have studied, at the self-organized criti-

After a simple transient, a rather trivial diffusivelike behav- 5| state. the sensitivity to initial conditions of Suzuki and
ior is observed, which reconfirms that, in the present probxaneko’s model for imitation games between birds. We have
lem, it is in the space of tha} that the nontrivial results are  exhibited nontrivial power-law behaviors, which enable,
conveniently revealed. among others, the connection with nonexistence statistics. In
other words, we have illustrated herein how the entropic ex-
ponentqg can be derived from the knowledge of the micro-
scopic dynamics. This appears to be an important step within
We have obtained for a set of imitating logistic maps anonlin_ear dyf_“?‘mi_ca' systems such as those exhibiting self-
power-law increase of the Hamming distance with time. Foprgamzed cr|t|qal!ty. Indeed, the present work suggests a
finite systems a plateau is observed if enough time elapse 1anner Of, predicting fundamentgl propert!es of no_t necessar-
but, in the limit N—oc, the nontrivial power-law regime 1 extensive systems from their very microscopic mecha-

should last forever. As the number of elements in the syster!S™S, Which determine, through the valuecpfthe degree

increases so does the time required to reach the plateau; frof) NOnextensivity.
this dependence the dynamical exponemias obtained.

As seen from the study with logisticlike maps in several
dimensionsd and with different{ exponents, the result is We sincerely acknowledge useful discussions with F. A.
robust in the sense that a power-law increase of the HanFamarit, S. A. Cannas, and A. R. Plastino. We are also grate-
ming distance with time is always obtained. There is a deful to K. Christensen for communicating to us his results
pendence ofy] on both the dimension of the model and the prior to publication. This work was partially supported by
exponent{ of the maps, pointing to different, continuously CLAF/CNPq Brazil.

IV. CONCLUSIONS
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