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Imitation games: Power-law sensitivity to initial conditions and nonextensivity

Andrés R. R. Papa* and Constantino Tsallis
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~Received 27 March 1997; revised manuscript received 21 November 1997!

We exhibit, at the self-organized critical state, a power-law sensitivity to the initial conditions in the system
of competing logistic maps introduced by Suzuki and Kaneko@Physica D75, 328~1994!#, which modelizes the
battle of birds defending their territories. From the associated exponent we obtain the value for the entropic
index q, which defines the recently introduced nonextensive generalization of the Boltzmann-Gibbs thermo-
statistics. In addition, we calculate the dynamical exponentz. We obtainedq.20.69 andz.1.32 for the
mean-field-type calculation (d5`) andq.20.39 andz.1.12 for a square lattice (d52) model. Finally, we
have generalized Suzuki and Kaneko’s model, using an extended form of the logistic map, and have calculated
the corresponding values ofq for d51,2,̀ .
@S1063-651X~98!07704-6#
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I. INTRODUCTION

Self-organized criticality is an interesting and quite ub
uitous phenomenon. Indeed, it is experimentally obser
and theoretically studied in a wide variety of physical sy
tems, which include sandpiles, ricepiles, and earthquakes@1#.
It has also been observed in the model introduced by Su
and Kaneko@2#, who proposed a set of coupled logistic ma
to mimic the singing imitation games that constitute the ba
of the battle for territory defense in various species of bir
This model has successfully described a variety of biolo
cally relevant features. However, its sensitivity to the init
conditions has never been focused on up to now, to the
of our knowledge. This property, which essentially char
terizes chaotic behavior, is herein studied quantitative
Moreover, we show that it is intimately related to therm
statistical nonextensivity in the sense we now describe.

It has been known for many years@3# that standard statis
tical mechanics fails to describe pathological systems suc
those that include long-range interactions~as well as long-
range microscopic memory or fractal boundary conditions
space-time, among others!. To discuss this type of anoma
lous system, one of us proposed@4# a thermostatistics base
on the generalized entropic form

Sq5k

12(
i 51

W

pi
q

q21
, ~1!

whereW is the total number of configurations,$pi% are the
associated probabilities,k is some suitable positive constan
andqPR is the index that allows for the generalization. It
straightforwardly verified that, in theq→1 limit, Eq. ~1!
reduces@usingpi

q21;11(q21)ln pi# to the well-known ex-
pression
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pi ln pi . ~2!

Let us mention that if we consider a system composed of
independentsubsystemsA andB ~in the sense that the com
posed probabilitiesfactorize into those ofA and B!, we
easily verify that Sq(A1B)5Sq(A)1Sq(B)1(1
2q)Sq(A)Sq(B), which clearly exhibitsnonextensivityif q
Þ1.

The above generalization has been applied to a wide
riety of physical situations including self-gravitational sy
tems @5,6#, turbulence in pure-electron plasma@6#, the dy-
namic linear response for nonextensive systems@7#, Lévy-
like @8# and correlatedlike@9# anomalous diffusions, the sola
neutrino problem@10#, cosmology@11#, long-range fluid and
magnetic systems@12#, and optimization techniques@13#.

This formalism has been shown@14,15# to be connected
to the sensitivity of nonlinear dynamical systems. More p
cisely, the numerical analysis of logisticlike maps as well
of the Bak-Sneppen model for biological evolution h
shown that, whenever quantities such as the Lyapunov ex
nent vanish~e.g., at the onset of chaos!, the standard, expo
nential type of sensitivity to the initial conditions is ofte
replaced by a weaker, power-law type of sensitivity. It h
been argued that, within the nonextensive formalism ass
ated with Eq.~1!, the sensitivity to the initial conditions o
possibly large classes of nonlinear maps is@14,16#, e.g., for a
one-dimensional map,

j~ t ![ lim
Dx~0!→0

Dx~ t !

Dx~0!
5@11~12q!lqt#1/~12q!, ~3!

which is the exact solution of the differential equatio
dj/dt5lqjq. We see that~i! for q51 we recover the tradi-
tional exponential behaviorj(t)5el1t and ~ii ! if t→`, j
}t1/(12q), which corresponds to the so-called weak cha
The Pesin equality states that, under some conditions,
Kolmogorov-Sinai entropyK1 ~where the subindex 1 refer
to the traditional statistics! equals the Lyapunov exponen
l1 . In @14#, both magnitudes, namely, the Kolmogorov-Sin
,
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entropy and the Lyapunov exponent, were independe
generalized toKq and lq , respectively@hereq precisely is
the entropic parameter appearing in Eq.~1!, on which the
definition of Kq is based#. In the q→1 limit Kq and lq
reduce toK1 and l1 , respectively. It was shown thatKq
coincides withlq , thus generalizing, for arbitraryq, the
Pesin equality as

Kq5lq ~lq>0!. ~4!

Let us stress that since it is from the generalized entr
Sq that we have obtainedKq and since Eq.~4! exhibits the
equality betweenKq andlq , when we focus onlq in some
context we are referring also to the generalized entropy
in particular to a specific value ofq.

In the present work, we show how these ideas apply
Suzuki and Kaneko’s imitation games@2#. After some tran-
sient, this model spontaneously evolves towards a crit
state located at the edge between chaos and periodic
dows, i.e., in a parameter region where the Lyapunov ex
nent of individual maps is close to zero. This peculiar stea
state-like behavior is sometimes referred to asintermittent
chaosor weakly chaotic.

II. IMITATION GAMES

Motivated by the observed complexity of bird songs a
by the observation that birds try to imitate each other’s so
for defense of territory, Suzuki and Kaneko advanced
model to study mutual imitation games among artific
birds. They confirmed, employing a set of interacting logis
maps, the evolution to the edge between chaos and wind

Let us briefly review their model. We use, for the imit
tion games, the logistic maps

xn11~ i !512a~ i !xn
2~ i ! ~5!

that play by pairs (i , j ) „xn( i )P@21,1#; a( i )P@0,2#; i
51,2, . . . ,N…. Initially, each map starts with random value
for both x0( i ) anda( i ) and repeats its dynamics for a tim
Trel ~rel stands for relaxation! long enough to approach it
individual attractor. Then, during a timeTimi ~imi stands for
imitation!, the i th map~for all values ofi ! modifies its dy-
namics~imitates! with a feedback from thej th map~we de-
scribe later on how the sequence forj is chosen!

xn11~ i !512a~ i !$@12e~ i !#xn~ i !1e~ i !xn~ j !%2, ~6!

where thee( i ) are the parameters~random numbers uni
formly distributed between zero and one and chosen o
forever! that characterize how strong the imitation is. Aft
this time, thei th map returns to its own dynamics@this is to
say, it runs with Eq.~3! starting from its current value forxn#
during a periodTD . During time TD a quantityD( i , j ) is
calculated that measures the distance between the imi
valuesxn( i ) and the original onesxn( j ):

D~ i , j !5 (
n5Trel1Timi11

Trel1Timi1TD

uxn~ i !2xn~ j !u2. ~7!

For the present work, and following Ref.@13#, we adopt
Trel5Timi5TD530.
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By inverting the role of the two maps and repeating t
same procedure, the quantityD( j ,i ) is calculated. IfD( i , j )
,D( j ,i ), then we will say that thei th map imitates better
the j th map than the other way around; hence thei th map
‘‘wins.’’ By ‘‘wins’’ we mean that the parametera( j ) is
substituted by a value in the vicinity ofa( i ) or, more pre-
cisely, it becomesa( i )1d, whered is a small random num-
ber, representing amutationalpossibility; following @2#, d is
extracted from the Lorentzian distributionP(d)5m/(m2

1d2) with m50.001. IfD( i , j ).D( j ,i ), the ‘‘winner’’ now
is the j th map and we proceed as before, i.e., we change
parameters of thei th map. We have not used homogeneo
random distributions to determined because, as noted in@2#
and confirmed by us, this can lead to parametersa that be-
come trapped at intermediate, meaningless values. Let us
that no further variations were performed on thee-parameter
distribution because, as noted by Susuki and Kaneko@2# and
confirmed by our own simulations, the distribution of th
parameter appears to be essentially ‘‘irrelevant.’’

In order to determine the values ofa that often win and
following the lines of@2#, we define a score for each value
a. We increase by one a counter associated with the valu
a of the winning map and by zero the counter correspond
to the loser. In Fig. 1 we show the score as a function ofa.
Note the importance of the period-three and period-four w
dows. Figure 2 shows the score as a function of the logis
map Lyapunov exponentl. Note now the peak on the zer
value. Let us recall that, for a single logistic map,l50 pre-
cisely corresponds toqÞ1, i.e., to a power-law~instead of
exponential! dependence of the sensitivity to the initial co
ditions.

III. RESULTS

The Hamming distance between two systems~theoriginal
and itsreplica! of N maps each, at any timen, is defined as

FIG. 1. Stationary score versusa for 100 logistic maps playing
all with all ~mean-field-like model!. The sum was calculated durin
;108 time steps after a long relaxation period. One time step
single two-bird game. The period-three window, period-four w
dow, and onset of chaos are pointed out by arrows; other rem
able peaks correspond to other windows and bifurcations.
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Hn5(
i 51

N uan~ i !2an8~ i !u
N

, ~8!

where the prime stands for the replica sample. Note that
Hamming distance is calculated over the parametersa of the
maps and not over the entire phase space~which includes the
x variables! because it is thea ~and not thex! that self-
organize. In our simulations, we have let a system ofN maps
(N5125,250,500,1000) relax and then we have construc
a replica by randomly changing~in 60.001! the parameters
a of ~typically! ten randomly chosen maps. After this
done, we calculate the ‘‘initial’’ damage or Hamming di
tanceH0 . It is clear that, for increasingly large values ofN
and since we have fixed the number of different maps in
replica to ten, the Hamming distance tends to zero. By
doing we numerically approach the definition of th
Lyapunov exponent, which demands a vanishingly small
tial discrepancy between the replicas. It plays here an an
gous roll to the one played by Lyapunov exponents for in
vidual maps. One reason that we used the Hamming dista
for characterization of the system is of practical order: T
search for the largest eigenvalue for the set of maps wo
imply the diagonalization of a huge matrix an enormo
number of times. This task is well beyond the current pos
bilities of computational media.

By allowing both the original and the replica systems
follow the previously described dynamics,with identical se-
quences of random numbers~in accordance with the standar
spreading-of-damage procedure!, we calculated the ratio
Hn /H0 . We use as the unit of time~n is increased by one!
each single game between two birds. In Fig. 3 we show,
the mean-field-like model~every bird plays with each one o
the others!, the log-log time dependence of the average~over
50 realizations! of Hn /H0 for various system sizes. It is
general feature thatHn /H0 grows with time following a
power law ~basically the same for all sizes! up to a size-

FIG. 2. Stationary score versus Lyapunov exponent~l! as a
result of the calculation in Fig. 1. Note the peak aroundl50, it
used a bin size of 0.0001.
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dependent point, after which a stationary plateau is reac
The slope of the first part of the curves is 0.5960.02. Since
this value equals@14# 1/(12q), we determineq520.69
60.02. For thed52 square lattice model~with periodic
boundary conditions! we have obtainedq520.3960.02.
These values can be compared with those associated
other models, namely, the logistic map at its threshold
chaos (q50.4 @14#!, the Bak-Sneppen model for biologica
evolution at the self-organized critical state (q522.1 @15#!,
and the rice-pile model (q520.12 @17#!.

The dynamical exponentz is usually defined throught
;Lz, wheret is the time during which the system behav
dynamically andL is the linear size of the system. Mor
precisely, the timet is defined as the time needed for th
damage to reach, except for statistical fluctuations, its
tionary value. Sot was estimated through the intersection,
Fig. 3, of the two straight lines respectively defined by t
plateaulike stationary value and the power-law increasing
gime. It was found~see Fig. 4! that the dynamical exponen
z51.3260.01. For thed52 square lattice model we ob
tained z51.1260.02. These values can be compared w
those obtained for the Bak-Sneppen model (z51.56 @15#!,
the rice-pile model (z51.3 @17#!, and the square lattice Isin
ferromagnet (z52.16 @18#!.

In order to explore the dependence of the parameteq
upon the nature of the maps, we implemented the algori
for the logisticlike family of maps

xn11~ i !512a~ i !uxn~ i !uz ~9!

in dimensiond51,2,̀ . The explored values ofz belong to
the interval@2,̀ #. In Fig. 5 we present the dependence ofq
on (z,d). The tendency ofq to the value 1~extensivity! as
z→` is apparent,for all dimensions, whereas for all finite
values ofz, q does depend on dimensionality. There is
threshold for the transition from nonextensivity to extens
ity; the change is gradual and only in thez→` limit is ex-
tensivity recovered.

FIG. 3. A log-log plot of the Hamming distance versus time f
various system sizes. All the curves coincide rather well on
straight-line part. The time step is a game between two maps.
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In addition to the above results, we have checked
sensitivity to the initial conditions of the set of values$x%.
After a simple transient, a rather trivial diffusivelike beha
ior is observed, which reconfirms that, in the present pr
lem, it is in the space of the$a% that the nontrivial results are
conveniently revealed.

IV. CONCLUSIONS

We have obtained for a set of imitating logistic maps
power-law increase of the Hamming distance with time. F
finite systems a plateau is observed if enough time elap
but, in the limit N→`, the nontrivial power-law regime
should last forever. As the number of elements in the sys
increases so does the time required to reach the plateau;
this dependence the dynamical exponentz was obtained.

As seen from the study with logisticlike maps in seve
dimensionsd and with differentz exponents, the result i
robust in the sense that a power-law increase of the H
ming distance with time is always obtained. There is a
pendence ofq on both the dimension of the model and t
exponentz of the maps, pointing to different, continuous

FIG. 4. A log-log plot of timet needed to reach the ‘‘knee’’~in
Fig. 3! versus system size. The slope of the straight line is 1.32 w
good accuracy. The time units are the same as in Fig. 3.
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varying, universality classes. In particular, the limitq51
~extensivity! is reached, for all dimensions, whenz→`.

Summarizing, we have studied, at the self-organized c
cal state, the sensitivity to initial conditions of Suzuki an
Kaneko’s model for imitation games between birds. We ha
exhibited nontrivial power-law behaviors, which enab
among others, the connection with nonexistence statistics
other words, we have illustrated herein how the entropic
ponentq can be derived from the knowledge of the micr
scopic dynamics. This appears to be an important step wi
nonlinear dynamical systems such as those exhibiting s
organized criticality. Indeed, the present work suggest
manner of predicting fundamental properties of not neces
ily extensive systems from their very microscopic mech
nisms, which determine, through the value ofq, the degree
of nonextensivity.
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FIG. 5. Dependence ofq on the dimension of the model and o
z. The calculations were carried ford51, 2, and` ~we recall that
d5` corresponds to the mean-field approximation! and forz 5 2,
3, 4, 5, 10, 20, and 40. In thez→` limit, q→1 for all values ofd.
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